首页> 外文OA文献 >Development of nanostructured bioanodes containing dendrimers and dehydrogenases enzymes for application in ethanol biofuel cells
【2h】

Development of nanostructured bioanodes containing dendrimers and dehydrogenases enzymes for application in ethanol biofuel cells

机译:包含树枝状大分子和脱氢酶的纳米结构生物阳极的开发,用于乙醇生物燃料电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.
机译:本文介绍了静电逐层(LbL)技术在生物阳极的制备中的应用,其在乙醇/ O(2)生物燃料电池中的潜在应用。更具体地说,LbL技术用于将脱氢酶和聚酰胺酰胺(PAMAM)树枝状大分子固定在碳纸载体上。测试了单系统(仅固定酶乙醇脱氢酶ADH)和双酶系统(既固定ADH和醛脱氢酶AldDH)系统。沉积到Toray纸上的ADH量为每双层95 ng cm(-2)。动力学研究表明,与通过被动吸附技术制备的生物阳极相比,LbL技术能够更好地控制生物阳极上的酶沉积。对于包含36个ADH双层的生物阳极,作为酶负载函数的单酶系统实现的功率密度值在0.02至0.063 mW cm(-2)的范围内。包含气体扩散层(GDL)的生物阳极表现出增强的性能,但必须提高其机械稳定性。双酶系统产生的功率密度为0.12 mW cm(-2)。总之,LbL技术是将酶固定在碳平台上的一种非常有吸引力的方法,因为它能够以非常低的酶消耗来严格控制生物阳极表面上的酶沉积。 (C)2010 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号